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The ecology of cavity nesting in passerine birds has been studied extensively, yet there
are no phylogenetic comparative studies that quantify differences in life history traits
between cavity- and open-nesting birds within a passerine family. We test existing
hypotheses regarding the evolutionary significance of cavity nesting in the Old World fly-
catchers (Muscicapidae). We used a multi-locus phylogeny of 252 species to reconstruct
the evolutionary history of cavity nesting and to quantify correlations between nest types
and life history traits. Within a phylogenetic generalized linear model framework, we
found that cavity-nesting species are larger than open-nesting species and that maximum
clutch sizes are larger in cavity-nesting lineages. In addition to differences in life history
traits between nest types, species that breed at higher latitudes have larger average and
maximum clutch sizes and begin to breed later in the year. Gains and losses of migratory
behaviour have occurred far more often in cavity-nesting lineages than in open-nesting
taxa, suggesting that cavity nesting may have played a crucial role in the evolution of
migratory behaviour. These findings identify important macro-evolutionary links between
the evolution of cavity nesting, clutch size, interspecific competition and migratory
behaviour in a large clade of Old World songbirds.
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Passerine birds show remarkable variation in the
structure and location of their nests. Nests provide
protection from predators and shield young from
inclement weather, thereby allowing for significant
periods of ontogenetic development. Nesting biol-
ogy is under multiple selective pressures, and the
relative benefit of different strategies is closely
linked with other life history traits (Martin 1995).
Here, we investigate associations between the
evolution of cavity nesting, clutch size, body size,
developmental periods and migratory behaviour in
a large family of passerine birds.

Avian nests can be divided into two broad cate-
gories: open nests and cavity nests (Collias 1997).
Over half of all passerine families contain cavity-

nesting species (Collias 1964), yet very few species
excavate nest cavities; instead, most species are
cavity adopters that nest in natural cavities or cavi-
ties excavated by other species (Collias 1964).
Cavity nests seem to confer certain advantages
over open nests, such as lower predation risk (Nice
1957, Alerstam & Hogstedt 1981) and a more
stable and favourable microclimate (Martin &
Ghalambor 1999, Rhodes et al. 2009, Coombs
et al. 2010). However, suitable nesting cavities can
be a limiting resource in temperate (von Haartman
1957) and tropical regions (Cockle et al. 2010),
leading to intraspecific and interspecific competi-
tion among cavity adopters. Together, these selec-
tive pressures may result in predictable differences
in other life history traits between cavity- and
open-nesting lineages.

One consistent life history difference between
nest types is that cavity adopters generally have
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larger clutches of eggs than open-nesting birds
(Lack 1947). There are two non-mutually exclu-
sive hypotheses to explain this pattern. First, cavity
nests are exposed to lower predation pressure,
favouring a larger clutch size (Martin 1993) and
longer developmental periods (Martin & Li 1992).
Secondly, competition for cavities leads to larger
clutch sizes in cavity adopters, as individuals try to
maximize their reproductive output at every
breeding opportunity (Martin 1993). In other
cavity-nesting passerines such as tits (Paridae) and
nuthatches (Sittidae), cavity excavation seems to
be a derived trait among smaller species, as they
are outcompeted by larger, sympatric species for
nesting cavities (Dhondt 2007). Hence, if nesting
cavities are a limiting factor and species do not
have the necessary morphology to extract cavities,
cavity-nesting species should be larger than open-
nesting species.

Life history traits and reproductive strategies
are influenced by multiple selective pressures
simultaneously. For example, an increase in clutch
size is seen not only in cavity-nesting birds, but
also in birds breeding at high latitudes and in
migratory birds (Lack 1947, Jetz et al. 2008). In
extremely seasonal high-latitude habitats, the
breeding season is short, so the opportunity to
re-nest is limited. If cavity nests provide the advan-
tage of a favourable microclimate and lower preda-
tion risk, then cavity nesting should be more
common in migratory lineages and in taxa breed-
ing at higher latitudes (Roper et al. 2010). Study-
ing the evolutionary interplay between these life
history traits is most effective within lineages that
exhibit variation in these traits among species. A
lineage that demonstrates remarkable diversity in
migratory behaviour, nest types and other life his-
tory traits is the Old World flycatchers (Muscicapi-
dae), a large family of small- to medium-sized
insectivorous birds. The group includes both
cavity-adopting and open-nesting taxa that breed
in diverse habitats throughout Europe, Asia and
Africa. Recent advances in comparative phyloge-
netic methods have produced a robust statistical
framework to test for correlated evolution between
traits among taxa (Freckleton et al. 2002). When
combined with known variation in muscicapid
nesting behaviour, these methodological advances
allow us to address long-standing questions about
links between nesting behaviour and life history
evolution. Using the most taxonomically compre-
hensive family-level muscicapid phylogeny to date,

we test the following predictions: (1) if cavity
nesting affords lower predation risk, then cavity-
nesting lineages should have larger clutch sizes and
longer developmental periods; (2) if competition
for cavities is a limiting factor, then cavity-nesting
lineages should have larger clutches and should be
larger in size than open-nesting species; and (3)
cavity nesting should be more common in species
breeding at high latitudes and in migratory species
with associations between cavity nesting, latitude
and bioclimatic variables of the breeding range of
the species or migratory behaviour.

METHODS

Study system

A substantial amount of natural history informa-
tion is documented for many species in Muscicapi-
dae (Collar 2005, Taylor & Peter 2006). Sangster
et al. (2010) and Zuccon and Ericson (2010)
provide numerous taxonomic revisions to resolve
multiple paraphyletic groupings and added many
species to this family from its sister taxon, the
thrushes (Turdidae). However, these publications
used a non-overlapping set of genes and taxa for
their analyses. Moreover, genetic data for more
species have become available and molecular
sampling for many taxa has also improved (e.g.
Aliabadian et al. 2012, Oliveros et al. 2012).
Incorporating these recent advances into a single
phylogeny takes us closer to a more complete and
accurate understanding of the evolutionary rela-
tionships within this family.

Phylogenetic inference

Our ability to study the evolution of life history
traits in Old World flycatchers relies upon a robust
phylogeny for the taxa at hand. We searched Gen-
Bank for nucleotide sequence data for all muscica-
pids by following the taxonomy of Clements et al.
(2013) and downloaded sequences from all avail-
able taxa for 11 molecular markers (Supporting
Information Table S1); the resulting concatenated
data set included 252 taxa, approximately 82% of
the 307 species currently recognized by Clements
et al. (2013). Alignments were performed with
MAFFT v7.029b (Katoh et al. 2002, Katoh & Stand-
ley 2013) and were subsequently checked by eye.

We performed phylogenetic inference within a
Bayesian framework; we ran three independent
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BEAST v1.7.5 (Drummond & Rambaut 2007,
Drummond et al. 2012) runs for 4 9 107 genera-
tions each and then combined runs to generate the
posterior distribution of post burn-in phylogenies
and a maximum clade credibility (MCC) tree. To
obtain information about the timing of branching
events, we used an uncorrelated lognormal relaxed
clock that was unlinked across all markers (Drum-
mond et al. 2006). To calibrate our molecular
clock, we used evolutionary rates and standard
errors reported by Lerner et al. (2011), which are
based on estimations of molecular divergence
between species in the Hawaiian honeycreeper
radiation and known ages of the Hawaiian islands
(Table S1). Although Hawaiian honeycreepers are
only distantly related to Old World flycatchers and
rates of molecular evolution can vary substantially
among lineages, these calibrations have provided
reasonable estimates of divergence times in other
distantly related taxa (Voelker et al. 2013, Mason
et al. 2014).

To examine whether enforcing a molecular
clock influenced topological relationships, we also
used MRBAYES v3.2.1 (Ronquist & Huelsenbeck
2003) to infer a posterior distribution of phyloge-
nies. We partitioned each locus separately and
applied the best fit model of evolution via JMODEL-

TEST v0.1.1 (Posada 2008). We compared Robin-
son–Fould distances (Steel & Penny 1993) among
trees from the posterior distributions of the
MRBAYES and BEAST inferences to assess topological
congruence among phylogenetic methods (see
Supporting Information Method S1 for additional
methodological details).

Life history data

For each taxon in the Muscicapidae, we used the
Handbook of the Birds of the World (Collar 2005,
Taylor & Peter 2006) to obtain information on the
following characters: body length (cm), body mass
(g), migratory status, nest type, average clutch
size, maximum clutch size, incubation period,
nestling period and total nesting period. Here, we
follow Zyskowski and Prum (1999) in defining
cavity nests as ‘nests placed in an adopted or self-
excavated cavity, such as a subterranean burrow,
rock crevice, termite mound, tree cavity, bamboo
internode, cavity in a man-made structure’. Many
muscicapids, such as species in the genera Phoeni-
curus, Oenanthe and Monticola, are highly variable
in their nest type. In natural habitats, many use

crevices and niches in rocks. These taxa are also
well-known for using unusual nest-sites such as
mail-boxes, old tyres and unused pipes. Most
importantly, they readily take up nestboxes when
available, suggesting that these groups are faculta-
tive cavity nesters (Collar 2005, Taylor & Peter
2006). Because of their high propensity to use
cavities, we classified these species as cavity nest-
ing in our comparative analyses. We also repeated
the same analyses with these species categorized as
open nesting (for the entire data matrix and sensi-
tivity analyses to how data were coded, see
Supporting Information). Similarly, migratory
behaviour can also vary within species. For the
purposes of our macroevolutionary study, we con-
sidered taxa as cavity nesters or migratory if any
population exhibits these behaviours. However, as
above, we also evaluated the robustness of our
inferences to these classifications by repeating each
comparative analysis with variable or ambiguous
taxa classified as open nesting and non-migratory
(Supporting Information).

Comparative analyses

Using the MCC tree, we implemented stochastic
character mapping (Bollback 2006) to reconstruct
the evolutionary history of nest type and migratory
behaviour across 210 species within a Bayesian
framework. We omitted 42 taxa because we had
no information on migratory status or nesting type.
This method calculates the conditional likelihood
of each character state at each node, and then
samples the posterior distribution of states to sim-
ulate transitions between character states along
each branch. Therefore, character state transitions
can occur at any point along a branch and are not
restricted to nodes, reflecting gains and losses of a
given character without invoking speciation events.
We used a symmetrical model of transition rates
and summarized the results of 100 simulated
reconstructions via the package phytools (Revell
2011) within the R v3.0.2 programming environ-
ment (R Core Development Team 2013).

To assess whether life history traits are corre-
lated with cavity-nesting behaviour, we ran phylo-
genetic generalized least squares (PGLS; Grafen
1989, Hansen & Martins 1996, Martins & Hansen
1997) analyses with cavity nesting as the indepen-
dent variable and eight different life history traits
as dependent variables: average clutch size, maxi-
mum clutch size, incubation period, nestling
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period, total nesting period, body length, body
mass and month of first breeding. Because many of
the life history traits considered here are correlated
with distance from the equator (Cardillo 2002),
we also included latitude as both a main and an
interaction effect in each model. We assigned a
single latitude value to each species by taking the
midpoint of occurrence records downloaded from
GBIF (http://data.gbif.org/) with the R package
dismo (Hijmans et al. 2005). For each PGLS
analysis, we considered two different models of
character evolution: Brownian motion (BM; Har-
vey & Pagel 1991) and Pagel’s lambda (PG; Pagel
1999). We tested both models of character evolu-
tion across a posterior distribution of 100 ran-
domly sampled post burn-in phylogenies to
account for uncertainty in topology and branch-
length estimations. We used corrected Akaike
information criterion (AICC) scores to identify the
favoured model of character evolution and aver-
aged PGLS parameters across phylogenies from
the posterior distribution. To make model residu-
als conform to a normal distribution under the
best-fit model of evolution, we log transformed
body size and maximum clutch size.

To test whether abiotic conditions are associated
with different nest types in Old World flycatchers,
we first downloaded distributional shapefiles from
BirdLife International, which we cleaned to include
only the breeding range. Then we downloaded
occurrence records for each species from GBIF
with the R package dismo (Hijmans et al. 2005).
For each species, we searched for all possible taxo-
nomic synonyms identified by the Encyclopedia of
Life (http://www.eol.org). We extracted 10 biocli-
matic variables that describe thermal conditions
(Bioclim 1–10) associated with the occurrence
records of each species and calculated mean values
across occurrence records. Using these climatic
data, we performed a phylogenetic principal com-
ponent analysis (PPCA; Revell 2009). We then
used the first principal component axis, which
accounted for 99% of the total variation (Support-
ing Information Fig. S1), in subsequent compara-
tive analyses. The loadings on this axis indicate that
higher scores correspond to colder, more seasonal
environments. We tested for an association
between PC1 and the evolution of cavity nesting
using the MCC tree in a phylogenetic logistic
regression (PLR) as described in Ives and Garland
(2010). We ran a PLR with cavity nesting as the
dependent variable and bioclimatic PC1 scores as

the independent variable across 188 species for
which these data exist. To obtain confidence inter-
vals in our parameter estimates, we performed
2000 iterations of parametric bootstrapping.

To assess whether the evolution of cavity nest-
ing and migration are correlated, we implemented
BAYESTRAITS, a reversible-jump Markov Chain
Monte Carlo Bayesian analysis described in Pagel
and Meade (2006), across 210 species of Old
World flycatchers that have known migratory/non-
migratory and cavity/open-nesting behaviours. In
brief, this method implements a Bayesian chain
that visits dependent and independent models of
binary character evolution in proportion to their
posterior probability. Using the MCC tree, we ran
separate MCMC analyses for independent and
dependent models of character evolution with
3 9 107 generations and discarded the first
1 9 106 generations as burn-in. We ran four inde-
pendent and dependent Markov chains each,
which converged upon similar log-likelihood val-
ues. We calculated mean transition rates between
each character state and compared the relative
performance of the dependent and independent
models via Bayes factors.

RESULTS

Phylogenetic inference

The topologies inferred by BEAST (Fig. 1) and
MRBAYES (Supporting Information Fig. S3) were
largely congruent and Robinson–Fould distance
indices overlapped between the two posterior dis-
tributions of trees (AICc, Supporting Information
Fig. S4). For simplicity, we restrict our discussion
to the posterior distribution of BEAST phylogenies.
We inferred a monophyletic Muscicapidae with
strong support (Fig. 1; posterior probability
(PP) = 0.99). Our molecular clock estimates that
the most recent common ancestor of all
Muscicapidae occurred 20.78 Mya (95% highest
posterior density: 19.69–21.78 Mya). Within Mu-
scicapidae, we recovered the same four subfami-
lies identified by Sangster et al. (2010): (1)
Muscicapinae (PP = 0.99); (2) Niltavinae
(PP = 0.97); (3) Erithacinae (PP = 0.91); (4)
Saxicolinae (PP = 0.97). Evolutionary relation-
ships within these subfamilies were largely con-
gruent with recently published molecular
phylogenies of various groups within Muscicapi-
dae (Beresford & Cracraft 1999, Roy 2001,
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Dietzen et al. 2003, Cibois & Cracraft 2004,
Voelker & Spellman 2004, Ertan 2006, Qiao-Wa
et al. 2006, Seki 2006, Outlaw et al. 2007, 2010,
Xin et al. 2007, Illera et al. 2008, Schmidt et al.
2008, Treplin et al. 2008, Sheldon et al. 2009,
Zink et al. 2009, Sangster et al. 2010, Voelker
2010, Zuccon & Ericson 2010, Aliabadian et al.

2012, Oliveros et al. 2012). A comprehensive
analysis of the topology inferred here is outside
the scope of the current study; however, we pro-
vide a brief discussion of confirmed relationships
and novel insights that we have generated from
our increased taxonomic and molecular sampling
(Supporting Information).
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Figure 1. Maximum clade credibility tree of 252 ingroup taxa and 11 outgroup taxa inferred using BEAST. Node support is indicated by
colour, wherein black, grey and white nodes reflect strong (PP ≥ 0.95), moderate (0.70 ≤ PP < 0.95) and weak (PP < 70) support,
respectively. The outer ring indicates subfamilies and the inner ring designates clades that are discussed in the Supporting Information.
Dotted concentric rings correspond to 5-Myr year intervals in divergence timing estimates, which are shown on the horizontal axis.
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Comparative analyses

Stochastic character mapping indicated that the
ancestor of all muscicapids was likely to have been
non-migratory (P = 1) and nested in cavities (P =
0.85; Fig. 2). Thus, open nests and migration are
both derived characters that had been gained and
lost multiple times throughout the evolutionary
history of Muscicapidae. Moreover, the evolution
of cavity nesting generally preceded changes in
migratory status. The reconstruction of migratory
behaviour at the root of Muscicapidae was robust
to different classifications of ambiguous or geo-
graphically variable taxa (Supporting Information
Fig. S5). However, it is important to note that the
inferred root character state of nesting type in
muscicapids is dependent upon how ambiguous or
variable taxa are classified. If taxa that are variable
or ambiguous were classified as open nesters rather
than cavity nesters, then the ancestral state of the
common ancestor of all muscicapids was likely to
have been an open-nesting species (P = 0.98; Sup-
porting Information Fig. S6).

Cavity nesting was correlated with an increase
in maximum clutch size (k = 0.54, b = 0.13 �
0.05, P = 0.02; Table 1). We also uncovered a sig-
nificant main effect of cavity nesting on body size;
cavity nesters tended to be larger than open nest-
ers (k = 0.95, b = 0.0813 � 0.03, P = 0.01; Table
1). Incubation period, nestling period, total nesting
period, body size and month of first breeding did
not differ between cavity- and non-cavity-nesting
species (Table 1). Latitude was correlated with
multiple life history traits. Average clutch sizes
were larger at higher latitudes (k = 0.55, b =
0.028 � 0.005, P < 0.001; Table 1) and a similar
trend was observed for maximum clutch sizes
(k = 0.54, b = 0.009 � 0.002, P < 0.001;
Table 1). Finally, latitude was correlated with the
month of first breeding, such that species at higher
latitudes bred later in the season (k = 0.37,
b = 0.0212 � 0.008, P = 0.01; Table 1). These
results were sensitive to how ambiguous or geo-
graphically variable taxa were coded for nesting

type. Specifically, if taxa that were variable or
ambiguous were treated as open nesters rather
than cavity nesters, then cavity nesters no longer
had larger maximum clutch sizes or larger bodies
(Supporting Information Table S3). However, the
effects of latitude on the aforementioned life his-
tory traits were robust to different classifications of
ambiguous or variable taxa with respect to cavity
nesting (Table S3).

We found no correlation between abiotic condi-
tions and the evolution of cavity nesting via phylo-
genetic logistic regression (Table 2). In other
words, lineages that breed in colder and more sea-
sonally variable environments were no more likely
to evolve cavity nesting compared with those in
warmer, less seasonal habitat. This result was
robust to parametric bootstrapping.

Our BAYESTRAITS analysis demonstrated that
the rate at which muscicapids gain or lose
migratory behaviour was strongly dependent on
the presence or absence of cavity nesting. More
specifically, changes in migratory behaviour were
far more common in cavity-nesting than open-
nesting lineages (Fig. 3). Moreover, the evolution
of a migratory, open-nesting state was primarily
the result of a loss of cavity nesting among
migratory lineages, rather than the gain of migra-
tory behaviour among open-nesting lineages. This
was evidenced by support for a dependent evo-
lutionary model of binary character state transi-
tions between migratory status and cavity
nesting, which performed better than an inde-
pendent model (Bayes factor = 7.88, Kass & Raf-
tery 1995). The interdependency of state
changes between migratory behaviour and nest-
ing type was robust to different classifications of
taxa that were ambiguous or variable in their
migration or nesting type. If taxa that were
ambiguous or variable were given an alternative
classification for migratory behaviour, a depen-
dent model was still preferred over an indepen-
dent model (Bayes factor = 5.51). Similarly, with
the alternative classification for cavity nesting, a
dependent model was also preferred over an

Figure 2. Stochastic character mapping of (a) cavity nesting and (b) migratory behaviour across 210 species of Old World flycatch-
ers using the maximum clade credibiity tree. Character state transitions are allowed to occur along branches and pie charts at each
node represent the likelihood of each character state (black = open nesting, non-migratory; grey = cavity nesting, migratory) from the
ancestral state reconstruction across 100 trees taken from the posterior distribution of possible phylogenies using a symmetrical
model of character state transitions.
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independent model (Bayes factor = 17.75). How-
ever, certain transitions were consistently less fre-
quent among different classification schemes. In
particular, character state changes in migratory
behaviour among open-nesting lineages were con-
sistently less frequent than changes in migratory
behaviour among cavity-nesting lineages (Sup-
porting Information Figs S7 and S8).

DISCUSSION

The evolution of cavity nesting is correlated with
multiple life history traits in Old World

flycatchers. Our phylogenetic comparative study
suggests a role for interspecific competition in
the evolution of cavity nesting and demonstrates
that cavity-nesting lineages have experienced
more gains and losses of migratory behaviour
during their evolutionary history than open-nest-
ing lineages. Old World flycatchers showed
exceptional evolutionary lability in nest type.
This lability might have been crucial in acquiring
the ability to migrate and colonize new areas,
which may have led to further diversification.
Previous studies concerning the effects of cavity
nesting on life history traits have largely focused

Table 1. Effects of cavity nesting on various life history traits as inferred through phylogenetic generalized least squares (PGLS)
analyses. The number of species included in each model is indicated by n, while dAICc indicates the how Pagel’s k model performs
compared with a Brownian motion model of character evolution. Effect sizes and directionality (b) are with respect to cavity nesting.
In other words, positive b-values indicate an increase in a given life history trait value among cavity nesting lineages.

Character n dAICc k Effect b � se P

Clutch size avg. 181 21.95 0.55 Cavity 0.2007 � 0.1371 0.147
Latitude 0.0288 � 0.0045 <0.001*
Cavity : latitude 0.0033 � 0.005 0.508

ln(Clutch size max.) 181 29.32 0.54 Cavity 0.1261 � 0.0543 0.022*
Latitude 0.0087 � 0.0018 <0.001*
Cavity : latitude 3e�04 � 0.002 0.859

Incubation period 90 10.45 0.66 Cavity 0.2542 � 0.4184 0.552
Latitude �0.0222 � 0.0113 0.058
Cavity : latitude 0.0196 � 0.0128 0.135

Nestling period 81 3.34 0.82 Cavity 0.1748 � 0.5897 0.756
Latitude 0.0058 � 0.0191 0.764
Cavity : latitude �0.0281 � 0.0204 0.176

Total nesting period 75 0.48 1 Cavity 1.0061 � 0.9259 0.500
Latitude 0.0114 � 0.0303 0.725
Cavity : latitude �0.0277 � 0.0318 0.564

ln(Size) 183 5.58 0.95 Cavity 0.0813 � 0.0294 0.010*
Latitude 1e�04 � 0.001 0.761
Cavity : latitude �4e�04 � 0.0011 0.689

ln(Mass) 152 3.58 0.97 Cavity 0.104 � 0.0669 0.194
Latitude �9e�04 � 0.0022 0.602
Cavity : latitude �1e�04 � 0.0023 0.648

Month 181 28.86 0.37 Cavity 0.5024 � 0.2579 0.053
Latitude 0.0212 � 0.0084 0.012*
Cavity : latitude �0.0136 � 0.0094 0.151

Significant P values (a = 0.05) are indicated with an asterisk.

Table 2. Results of phylogenetic logistic regression estimates with Firth correction for the effect of abiotic conditions (lower PC1 val-
ues indicate warmer, less seasonal habitat) on the evolution of cavity nesting (0 = non-cavity, 1 = cavity) in Old World flycatchers
(n = 188). Thus, positive estimates of b1 would suggest that the evolution of cavity nesting is associated with colder, more seasonal
environments.

Parameter Estimate se t score Bootstrapped mean Bootstrapped confidence interval Bootstrapped P-value

a �0.62 – – �0.71 (�3.28, 0.69) 0.02
b0 (intercept) �1.20 0.48 �2.50 �1.08 (�1.92, �0.15) 0.01
b1 (abiotic conditions) 0.18 0.18 1.00 0.18 (�0.18, 0.57) 0.30
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on ecological communities by examining differ-
ences among species that share breeding grounds
(Cockle et al. 2011). Our phylogenetic compara-
tive analysis revealed novel links between cavity
nesting, clutch size, body size and migratory
behaviour from a macroevolutionary perspective.

Cavity nesting was positively correlated with
maximum clutch size and body length in muscica-
pids. Incubation period, nestling period and total
developmental period did not show a positive rela-
tionship with cavity nesting, which negated our
prediction that cavity nesting evolved to counter

(a)

(b)

Figure 3. (a) Histograms of estimated transition rates between discrete character states of migratory and cavity nesting behaviour
across 210 species of Old World flycatchers taken from the posterior distribution of BAYESTRAITS. Mean and standard errors are shown,
while Z shows the percentage of sampled generations in the MCMC chain wherein that transition is assigned to the zero. If a model
of independent evolution were favoured, then each histogram should be similar to the one that appears either above or below, which
would indicate that gains or losses of a given character state do not depend on the state of the other character in question. (b) Visu-
alization of differences in character state transition rates (q-values) wherein the darkness of an arrow represents the mean transition
rate (darker = higher). Arrow thickness represents the percentage of post burn-in generations wherein the given transition rate is not
assigned to zero (thicker = more often greater than zero).

© 2015 British Ornithologists’ Union

Life history evolution in Old World flycatchers 307



predation. However, the capacity to evolve adap-
tive developmental periods could be phylogeneti-
cally constrained among Old World flycatchers
(Pienaar et al. 2013). Thus, lowered predation risk
may not underlie increased maximum clutch sizes
among cavity-nesting muscicapids.

Cavity-nesting muscicapids have significantly
longer bodies than open-nesting species (Table 2).
Thus, the increased maximum clutch sizes of
cavity-nesting species may be related to competi-
tion for nesting holes. We postulate that larger
species are better able to acquire and defend nest-
ing cavities than smaller species in a community;
smaller muscicapids may not be able to compete
with larger muscicapids or other cavity nesters.
Variation in clutch sizes between different nest
types is well known in birds (Martin 1993); how-
ever, our findings suggested a possible interplay
between body size and interspecific competition
for nesting cavities, which might underlie variation
in clutch sizes among nest types in muscicapids at
a macroevolutionary scale. Our analyses also lend
further credence to the well-documented pattern
of larger clutch sizes at higher latitudes.

We found no association between cavity nesting
and the climatic conditions of species’ breeding
ranges. Many tropical species in the Saxicolinae
have subterranean cavity nests, which may have
prevented us from finding an association with cli-
matic variables. Additionally, the first month of
breeding was significantly related to latitude alone,
which suggested a strong role of geography in
determining initiation of breeding, as in most bird
families, rather than nest type.

Our BAYESTRAITS analyses revealed that transi-
tions from non-migratory to migratory character
states have been considerably more common
among cavity-nesting than open-nesting lineages
(Fig. 3). Most migratory muscicapids breed at
high latitudes, which suggests that cavity nesting
might be adaptive at high latitudes for reasons
other than predation and might have been cru-
cial in the evolution of migratory behaviour.
Tropical species typically have lower nest atten-
dance than temperate species (Skutch 1985); as
demonstrated by recently introduced starlings
(Johnson & Cowan 1974), the stable microcli-
mate of cavities might have led to lower egg
losses to low temperatures in ancestral migratory
lineages. Hence, although gains in cavity nesting
might have facilitated migration and colonization
of new areas, intraspecific and interspecific

competition for cavities in temperate areas might
have subsequently led to the numerous losses of
cavity-nesting behaviour (Fig. 3). We found no
relationship between seasonality of the breeding
range and cavity nesting (Table 2); however,
because cavity nesting evolved before migratory
behaviour in this clade, cavity nesting may have
played an important role in the evolution of
migratory behaviour and colonization of new
areas in muscicapids.

Important life history traits, such as reproduc-
tive strategies and migratory behaviours, are often
the product of a complex interaction between
multiple selective pressures. We suggest that inter-
specific competition, a pervasive selective pressure,
drives variation in migratory and nesting behaviour
among Old World flycatchers. Our study demon-
strated the efficacy of combining ecological knowl-
edge, genetic data and comparative methods to
examine variation in important life history traits
across species.
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SUPPORTING INFORMATION

Additional Supporting Information may be found
in the online version of this article:

Methods S1. Additional methodological details
for phylogenetic inference.

Results S1. Additional information about the
results of phylogenetic inference in light of previ-
ous studies.

Table S1. Additional information regarding 10
molecular markers used for phylogenetic inference.

Table S2. Data matrix of molecular markers
used for phylogenetic inference. Sequence identi-
fier numbers (GI numbers) are indicated when
available.

Table S3. Phylogenetic generalized least squares
(PGLS) results using an alternative classification of
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cavity nesting in which species that are variable or
ambiguous in their nesting behaviour are assigned
to the open-nesting category.

Figure S1. First principal component loadings of
Bioclim variables 1–10 for breeding ranges of 188
species of Old World flycatchers.

Figure S2. Histogram of the number of loci
sampled for each taxon included in phylogenetic
analyses.

Figure S3. MRBAYES phylogeny inferred for 252
species of Old World flycatchers.

Figure S4. Density plot of Robinson–Fould dis-
tance comparisons among posterior distributions of
MRBAYES and BEAST phylogenies.

Figure S5. Stochastic character mapping of cav-
ity nesting and migratory behaviour of 210 species

of Old World flycatchers using an alternative treat-
ment of ambiguous or variable migratory statuses.

Figure S6. Stochastic character mapping of cav-
ity nesting and migratory behaviour of 210 species
of Old World flycatchers using an alternative treat-
ment of ambiguous or variable nesting types.

Figure S7. Output of BAYESTRAITS re-analysis
with alternative character coding for migratory sta-
tuses.

Figure S8. Output of BAYESTRAITS re-analysis
with alternative character coding for nesting types.

Appendix S1. Life history data, including cate-
gorizations of migratory behaviour and nesting
type, climatic data, and latitudinal data.
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